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Abstract 

 
Energy consumption of wireless access networks is in permanent increase, which necessitates 

development of more energy-efficient network management approaches. Such management 

schemes must result with adaptation of network energy consumption in accordance with daily 

variations in user activity. In this paper, we consider possible energy savings of wireless local 

area networks (WLANs) through development of a few integer linear programming (ILP) 

models. Effectiveness of ILP models providing energy-efficient management of network 

resources have been tested on several WLAN instances of different sizes. To cope with the 

problem of high computational time characteristic for some ILP models, we further develop 

several heuristic algorithms that are based on greedy methods and local search. Although 

heuristics obtains somewhat higher results of energy consumption in comparison with the ones 

of corresponding ILP models, heuristic algorithms ensures minimization of network energy 

consumption in an amount of time that is acceptable for practical implementations. This 

confirms that network management algorithms will play a significant role in practical realization 

of future energy-efficient network management systems.  
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1. Introduction 

Power consumption of the Information and Communication Technologies (ICT) sector has 

become a key issue in the last few years, due to rising energy costs [1], [2] and serious 

environmental impacts on greenhouse gas emissions [3]. Pollution and energy savings are 

keywords that are becoming more and more of interest to people and governments, and the 

research community as well is more sensitive towards these topics in the last years. An important 

part of the ICT consumption, the energy consumption of wireless access networks is rapidly 

increasing [4] and in some countries it accounts for more than 55% of the whole communication 

sector [5]. Such increase also accounts to a non-negligible part of the operational expenditures 

(OPEX) of network equipment owners. Moreover, growth of data rates in wireless networks by a 

factor of roughly ten every five years and an increase in the number of users, result in a doubling 

of the energy consumption of wireless network infrastructure every 4–5 years [6].  

With rising energy prices, base stations (BSs) as the most significant energy consumer in the 

wide area wireless access networks contribute up to 50% of the total OPEX, especially if 

operators have many diesel fueled off-grid BS sites [7]. In addition, the number of enterprise 

deployments and overall number of individual access points (APs) in small and medium size 

wireless local area networks (WLANs) increases exponentially every year [8]. Although average 

BS energy consumption is much higher in comparison to those of APs, vast numbers of WLAN 

network devices installed worldwide contribute to enlargement of the energy consumption in 

wireless access networks. Therefore, development of a new generation of wireless access 

networks characterized with significantly higher energy efficiency is a necessity. 

For having “greener” wireless access networks not only requires us to develop more energy-

efficient hardware components, but to take a holistic view of the complete wireless access 

network through implementation of energy-efficient network management. This means that 

network devices must adopt their on/off state and level of transmitted (Tx) power in accordance 

with traffic patterns. To achieve this for large-scale wireless networks without hampering 

coverage and/or client performance, management of network devices activity and Tx power 

from a centralized location seems to be a promising approach.  

But, energy-efficient network management requires appropriate algorithms capable of 

exploiting minimal network resources at any moment, while assuring to active users satisfactory 

level of service quality. Therefore, in this paper, we present several versions of heuristic 

algorithms based on a combination of greedy approach and local search methods. While 

ensuring at any moment coverage and capacity demands of active users, we embedded in 

developed algorithms features: line capability of offering full coverage of service area (SA) and 

limitations in frequent variations of network devices activity. Also, a comparison of obtained 

results in terms of energy savings and computational time has been performed between heuristic 

algorithms and equivalent integer linear programming (ILP) models.  

The rest of the paper is organized as follows: in Section 2, we present related work dedicated 

to improving energy efficiency of wireless access networks. Section 3 gives an overview of 

analyzed network instances and explains approximations of real traffic patterns. Formulation of 

ILP models and heuristic algorithms has been presented in Section 4 and Section 5 respectively. 

Numerical results obtained have been discussed in Section 6 and in Section 7, we give some 

concluding remarks. 



3 

 

 

2. Related work 

Topics dedicated to reductions of energy consumption in wireless access networks have attracted 

the attention of the research community very recently. Some initial ideas and results for the case 

of wide area wireless access networks can be found in [9], [10], [11], [12], [13], [14] and [15], 

while energy saving approaches in WLANs have been investigated in [16], [17], [18], [19], [20], 

and [23]. Authors in works [9] and [10] showed that it is possible to switch off some cellular 

network cells [9] and UMTS Node B’s during low-traffic periods, while still guaranteeing 

quality of service constraints in terms of blocking probability and electromagnetic exposure 

limits [10]. The impact of deployment strategies on the power consumption of mobile radio 

networks considering layouts featuring varying numbers of micro BSs per cell in addition to 

conventional macro sites has been investigated in [11]. In [12], the authors evaluate the energy 

savings that can be achieved with the energy-aware cooperative management of the cellular 

access networks of two operators offering service over the same area. The total and per user 

power consumption for three different wireless technologies including, namely fixed WiMAX, 

mobile WiMAX and UMTS, is investigated in paper [13]. In paper [14], the relationship 

between the energy efficiency and spectrum efficiency in a multi-cellular network is obtained, 

and the impact of multi-antenna on the energy efficiency of cellular networks is analyzed. 

Dynamic adjustment of wireless topology and the radiated power using methods such as 

bandwidth shrinking and cell micro-sleep in accordance to load have been investigated in work 

[15].  

Furthermore, a first attempt for adoption of resource on-demand (RoD) strategies that can 

reduce energy consumption of centrally managed WLANs was published in a significant work 

[16]. Authors in [17] develop an analytical model for assessment of the effectiveness of RoD 

strategy introduced in [16]. The proposed analytical model is used for studying two simple on-

demand policies that, based on instantaneous WLAN parameters, select the appropriate number 

of APs to activate, thus trying to avoid wasting energy on underutilized APs. According to both 

papers [16] and [17], ample room for possible energy savings in large-scale WLANs exists. In 

article [18] authors propose solutions in the area of energy sustainable WLAN mesh networks 

through introduction of AP solar powering, also discussing the shortcomings of IEEE 802.11 

when used in these types of networks.  

In our positioning paper [19], for the first time principles of ILP are used to show possible 

reductions of instantaneous power consumption in real size WLANs through implementation of 

energy-efficient network management. We extended obtained results in work [20] through 

development of new ILP models, indicating significant savings in monthly energy consumption 

on the level of complete WLANs. Actually, we manage to modulate energy consumption of 

WLANs according to the realistic traffic pattern, also considering important factors like: full 

coverage of SA, negative effect of frequent variations on activity of network devices, influence 

of interference among network elements and capacity limitations of network devices.  

Although an optimization approach based on ILP models presents a powerful tool for 

modeling possible energy savings in wired [21], [22] and wireless networks [19], [20], the ILP 

approach is not without drawbacks. Due to NP-hardness of optimization models proposed in our 

recent work [20], computational time of some ILP models becomes very long. Since long 

computational time reduces the possibility for practical implementation of ILP models in real-

time management systems, in the paper [23] we present an initial version of heuristic algorithm  
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Fig. 1. a) Positions of APs and UTs inside medium size network instance, b) Possible wireless 

connections between APs and UTs inside medium size network instance 

 

 
 

 

 

 

 

 

 

 

 

 

 

       

          Table 1. Properties of analyzed WLAN instances 

Size of 

network 

 instance 

No. 

of 

UTs 

(TPs) 

No. 

of  

APs 

(CSs) 

Dimensions 

of SA  

(m x m) 

Small 143 13 506 x 506 

Medium 671 61 1.182 x 844 

Large 1672 152 1.689 x 1.689 

Extra-large 3069 279 2.196 x 2.196 

 

 

 
 

Fig. 2. Allocation of APs and UTs inside: a) small, b) large and c) extra-large network instance 
 

for energy-efficient management of WLAN resources. According to our knowledge, this is the 

first algorithm for management of on/off activity and Tx power of APs in large-scale WLANs. 

The development of such an algorithm was a necessity, since all previous research lacks 

algorithms capable of adapting energy consumption of WLANs to actual traffic load. In order to 

further improve the management properties of the initially proposed algorithm, we develop in 

this paper a few extended versions of the heuristic algorithm. 
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Table 2. Dependence of instantaneous AP power consumptions and PHY rates on level of Tx power    

 

      Table 3. Time periods for traffic approximation and   
                                parameters of path-loss model 

Traffic approximation Path-loss model 
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   Fig. 3. Approximation of real traffic pattern   
 

3. Analyzed network instances and traffic patterns 

For testing energy management strategies introduced in the paper through ILP models and 

heuristic algorithms derived later on, we tried to emulate the topology of widespread IEEE 

802.11g WLANs. For that purpose we use for analyses four different WLAN network instances, 

assuming that APs in each instance work in infrastructure mode. As specified in Table 1, 

instances are named as: small, medium, large and extra-large instances due to differences in the 

size of SA and number of APs and user terminals (UTs). Allocation of APs and UTs inside SA 

of: small, medium, large and extra-large instance have been presented in Figs. 1a), 2a), 2b) and 

2c) respectively. Such network instances can correspond to various real WLANs, which 

deployments can be seen in everyday life. For example, small and medium instances resemble 

some office or faculty building WLANs, while large and extra-large instances can be identified 

with WLANs of a travel terminal like train station or airport complex. To be more consistent 

with real WLAN deployments, we assume that larger network instances have different allocation 

densities of APs in different coverage areas (CAs), e.g. medium instance has three CAs (Fig. 

1a)). This is similar to real network topologies where generally, a higher number of APs have 

been allocated inside those CAs where a higher number of UTs is expected.  

In order to simulate changes of traffic load during one day, the discrete function fA(t) presented 

in Fig. 3. is used for approximating normalized daily traffic pattern fR(t) of a realistic WLAN. 

According to Table 3 and Fig. 3, approximation is done using five different time periods t. In the 

paper [20], we experiment with higher and lower numbers of approximation time periods and we 

show that selection of five time periods presents the best trade-off between computational 

Level 

of Tx 

power 

k  

Baseline 

power 

consum. 

Pb 

 (W) 

Additional 

power 

consum. 

 Pk  

(W) 

Average 

power 

consum. 

P(k)  

(W) 

Tx power 

PTk 

(mW/dBm) 

Distance (coverage rings) 

r=1 

(0 m–40 m) 

r=2  

(40 m–80 m) 

r=3  

(80 m–120 m) 

Average PHY rates 

Rjkr (Mb/s) Rjkr (Mb/s) Rjkr (Mb/s) 

1 5 7 12 100/20 Rj11=54 Rj12=36 Rj13=18 

2 5 5 10 75/18,8 Rj21=48 Rj22=24 Rj23=12 

3 5 3 8 50/17 Rj31=36 Rj32=18 Rj33=9 

4 5 1 6 25/14 Rj41=24 Rj42=12 Rj43=6 (N/A)  
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accuracy and computational time of ILP models. We additionally assume no time gap between 

subsequent time periods, also neglecting somewhat unequal traffic patterns between working and 

weekend days. Durations of time periods are expressed in hours (h) as the time difference 

between ending (Tt+1) and starting time (Tt) of some time period t. The percentage of active users 

in each time period with corresponding durations can be found in Table 3.  

Generation of network instances presented in Figs. 1 and 2 have been done using a specially 

developed software solution written in C++ programming language. Such instance generator 

(IG) performs generation of network instances according to a wide range of initially defined 

input parameters such as: size of SA, number of network and user devices, guaranteed PHY rates 

to users, sensitivity threshold, number and duration of time periods, etc. The IG generates data of 

network instances in the appropriate forms, which are used as input data for CPLEX solver or 

heuristic algorithm. In order to model radio propagation characteristics of analyzed WLAN 

instances, IG uses a long distance path-loss model with log-normal fading [24], [25] defined as  

                                            [dB] log10)()(
0

100
       X

d

d
ndPdP

plpl 













                               (1) 

where )(
0

dP
pl

is the average value of the path loss at close-in reference distance d0, n is path-loss 

exponent and Xσ is a zero-mean Gaussian distributed random variable having standard deviation 

σ. Parameters of the path-loss model used by IG are presented in Table 3, and these values 

correspond to those of real WLANs [24], [25]. We assume that a potential wireless link exists 

between AP and UT located at Euclidean distance d from AP, only if the signal strength at the 

position of UT satisfies the next criteria: 

                                                  [dBm])()(                  PdPPdP
rtrplTkr

                                   (2) 

where PTk is Tx signal strength (in dB) of AP and Prtr is power sensitivity threshold of each UT 

equal to -83 dBm (Table 3). According to this criteria, straight lines on Fig. 1b) present potential 

wireless links among APs and UTs of medium size WLAN instance, and similar visualization of 

potential wireless links can be obtained for other network instances presented in Fig. 2.  
 

4. Formulation of optimization models 

To formulate the energy optimization problem, we assume that instantaneous (average) power 

consumption of wireless network devices can be expressed as a function of Tx power (PTk). If a 

wireless network device transmits a radio signal with the Tx power PTk, baseline power 

consumption Pb increases for amount of Pk resulting in instantaneous consumption equal to 

[m])(                        PPkP
kb

                                   (3) 

Table 2 shows considered values of AP baseline Pb and additional power consumptions Pk for 

different Tx power levels PTk. Also, we assume maximal CA of each AP equal to 120 m, which 

is a typical value for moderately obstructed indoor WLAN environments. Inside the CA of each 

AP, we considered three circular coverage rings with borders: 0  d  40 m, 40 m  d 80 m and 

80 m  d  120 m. All users located in some coverage ring will have the same PHY rate, which 

can be treated as the average transmission rate Rjkr (Mb/s) of the corresponding CA. Table 2 

presents values of PHY rates in each coverage ring for different Tx power levels. Values are 

selected according to practical measurements of IEEE 802.11g AP PHY rates [26]. To 

mathematically model the radio coverage of SA having already deployed APs, we take into 
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account possible positions of UTs called test points (TPs) and all positions of the APs called 

coverage sites (CSs). Let: 

 jJ ={1, ..., m} be the set of m CSs hosting APs, 

 i I ={1, ..., n} be the set of n TPs where UTs are placed, 

 tH ={1, ..., p} be the set of p different time periods during one day, 

 rD ={1, ..., e} be the set of e coverage rings (areas) around each AP, 

 kK ={1, ..., l} be the set of l different Tx power (PTk) levels, 

 i I(j,k,r,t) be the subset of TPs covered with (j, k) combination in r-th coverage ring during 

time period t. 

The problem is to find in each time period t a set of powered-on CSs with minimal power 

consumption satisfying capacity demand dit (in Mb/s) of all active TPs. Such a problem is a 

combination of minimum set covering problem and capacitated facility location problem and to 

formulate the problem we introduce three binary decision variables: 
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Furthermore, 0–1 incidence matrix containing coverage information of all TPs is defined as 




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The first ILP optimization model named as Model Energy (ME) can be formulated as 
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     pHtmJjy
jt

,...,1 ,,...,1 1,0           (11) 

       pHtlKkmJjx
jkt

,...,1,,...,1 ,,...,11,0         (12) 

          ,...,1,,...,1 ,,...,1  ,,...,11,0 pHtlKkmJjnIiw
ijkt

      (13) 

Relation (4) is an objective function that minimizes monthly energy consumption of a 

complete WLAN. Constant C equal to 0,03 (1/month) in the objective function is used for 

transformation of daily energy consumption (Wh/day) in the monthly energy consumption 

(kWh/month). We use this unit for expressing the energy consumption of a wireless network, 

since kilowatt-hour (kWh) is the billing unit preferred by utility companies for charging 

consumed electrical energy. Constraints (5) are coherence constraints stating that each CS (AP) 

can use at any moment at most one Tx power level. Coverage constraints (6) assure that all TPs 

are within the CA of at least one CS and connection constraints (10) states that every TPi can be 

connected to only one CS at any time. Since total capacity of each powered on CS is shared 

between connected TP(s), capacity constraints (7) prevents that overall TP demand(s) dit in the 

r-th coverage ring exceed PHY rate Rjkr of that ring. Best power selection constraints (8) make 

implicit assignment of TPs to the best active CS in terms of the signal strength. According to 

configuration constraints (9), TP i can be assigned to a CS j only if that CS is active and 

configured with k-th transmit power level. Finally, for decision variables yjt, xjkt and wijkt, 

constraints (11), (12) and (13) are the integrality constraints. All described constraints must be 

satisfied for each period t.  

To mathematically model full coverage of the SA with radio signal during all the day, we 

introduce a concept of virtual points called measurement points (MPs), where 

 sS ={1, ..., u} is the set of u MPs inside the SA.  

The MPs serve as probe points in which minimal level of received signal strength according to 

relation (2) must be satisfied. With dense allocation of MPs having a regular grid structure, full 

coverage of the SA can be assumed. By adding to the previous model ME a new constraint  

   pHt uSstsxb
j k

jktsjk
,...,1,,...,1:),(1          (14) 

results with a new ILP model named as model energy/full coverage (ME/FC). Since full 

coverage constraints (14) mandate that every MP be covered with the radio signal received from 

at least one CS during each time period, those constraints assure complete coverage of the SA. 

In addition to presented ILP models, we develop an ILP model that reduces frequent variations 

in on/off activity of CSs between subsequent time periods. We introduce this model since large 

variations in network configuration from one time period to the next one may have a negative 

impact on signaling overheads and perceived service quality. One approach in reducing this 

impact can be through introduction of an energy penalty for powering on a new CS that was 

turned off in the previous time period. To mathematically express influence of this penalty, we 

introduce a new binary variable defined as  



 


 otherwise

periodtimesubsequentinactivatedisCSthjif
z

jt 0

1
1

 

A new objective function considering the penalty for powering on CSs in a subsequent time 

period can be formulated using this binary variable as  
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By substituting objective function (4) of previous models ME and ME/FC with objective 

function (15) and by adding to the previous constraints (5–13) the new ones defined as 

   1,...,1,,...,1:),(
11


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pHt mJjtjyyz
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       (16) 

     pHt mJjz
jt

,...,1,,...,11,0           (17) 

a new mathematical model named as Model Energy Limited Variations (MELVs) has been 

developed. In the objective function (15), E is the value of energy penalty equal to 0,003 

kWh/month. For calculation of this value we exploit energy consumed by network device during 

booting, assuming that powering on of new CS repeats among subsequent time periods for each 

day during one month. All presented optimization problems belong to the NP-hard category, 

since each of them includes as a special case the capacitated facility location problem, known to 

be NP-hard [27]. 
 

5. Heuristic algorithms 

Another approach for solving the problem of energy-efficient network management is based on 

development of a heuristic algorithm. Besides exact algorithms for ILP problems like branch and 

bound, cutting plane, etc. that finds the optimum or at least bounds it, other algorithms like 

heuristic algorithms only find some (hopefully good) solution. Nevertheless, heuristics are 

important in practice because efficiency is often a high priority. An efficient heuristic algorithm 

is the one which determines a solution within a reasonable time using reasonable resources. For 

the types of problems considered in this work, a typical reasonable time frame is a few hours and 

a typical reasonable resource is a high-end personal computer (server).  

Our heuristic approach has been spatially tight to the problem tackled by previous ILP 

(mathematical) models, focused on energy consumption minimization of large-scale WLANs. 

Actually, for each of the proposed ILP models we develop corresponding heuristic algorithms. 

In this way, we can compare obtained results in terms of computational time and accuracy. 

Therefore, the first heuristic algorithm named as Heuristic-Model Energy (H-ME) works in the 

same manner as the previously introduced ME, tending to minimize monthly energy 

consumption of the entire network. The second heuristic algorithm named as Heuristic-Model 

Energy/Full Coverage (H-ME/FC) optimizes monthly energy consumption while ensuring full 

coverage of the SA. Heuristic-Model Energy Limited Variations (H-MELVs) is the last proposed 

heuristic algorithm, which as an MELV model offers energy-efficient network management, also 

limiting frequent variations in the activity of network devices.  

Given an instance with a set of CSs, TPs and corresponding traffic demands dit (Mb/s), the aim 

of each heuristic algorithm is to build up a solution S that offers the lowest energy consumption 

of the network in each time period. During this process, different heuristic algorithms must take 

into account different constraints, like guaranteeing full SA coverage or limiting frequent on/off 

changes of network devices. Generally, each of the proposed heuristic algorithms is composed of 

two phases. In the first one, we adopt a greedy approach in order to build up a feasible solution 

S. The greedy is an algorithm that finds the solution (locally optimum) through a sequence of 

partial decisions, without ever coming back to the taken decisions in order to modify them. 



10 

 

Generally, greedy algorithms have high computational efficiency, but they do not assure 

reaching of the global optimum. Local search (LS), instead, is useful to improve the solution of 

the greedy algorithm, looking inside a neighborhood of the solution. Therefore, in the second 

phase, LS starts with an initial solution S and iteratively moves to a best candidate within the 

current neighborhood until no further improvement can be achieved. If this happens, we 

memorize this solution; otherwise we keep the greedy solution.  

5.1 Greedy phase 

The generic structure of the first H-ME algorithm is:  
Algorithm: Generic structure of H-ME heuristics 

1: PROCEDURE Heuristic_ME (I,J,K,P) 

2:    S=∅; 
3: BuiltUpSolution (I,J,K,P,S) 

4: LocalSearch (S); 

5: RETURN (S) 

6: END Heuristic_ME 
 

where meaning of the sets: I, J, K, and corresponding indexing are the same as the ones 

introduced in the previous Section. With P, we denote for each (j, k) pair, subset of TPs covered 

with that (j, k) pair. In the P, for each P_(j, k) combination, TPs are sorted in decreasing order of 

the signal strength received from that (j, k) combination. Additionally, S is the set of (j, k) 

combinations, with j J and kK, that belongs to a final solution. Therefore, (j, k) 

combinations in S define which CS j transmitting at Tx power level k will be powered on during 

some time period t. 

Each phase of proposed heuristic algorithms is characterized with the related generic function. 

The BuiltUpSolution function in the greedy phase develops, after sequence of iterations, a 

feasible starting solution S. The pseudo code of the greedy phase is:  
Algorithm: Greedy phase strategy for H-ME heuristics 

1: PROCEDURE BuiltUpSolution_ME (I,J,K,P,S) 

2:       Covered_TPs = ∅; 
3: WHILE Covered_TPs ! = ALL_TPs 

4:       Best_Pair = BestPairselection_ME (J,K,P,S); 

5:       S = S U Best_Pair; 

6:      Covered_TPs = Covered_TPs U TPs_PairToAdd 

7:    TPs_Association (S,P); 

8:   Try_Decrease_Power (S);  

9: END BuiltUpSolution_ME 
 

At the beginning of the greedy phase, the BuiltUpSolution function creates and puts to null the 

set of all active TPs that are covered with the current solution S during time period t. Then it 

invokes the BestPairSelection function. This function looks for a (j, k) pair that covers the 

highest number of active TPs which are not yet served. A pair that satisfies such criteria will be 

added to the solution S at the end of each iteration of the BuiltUpSolution function. The pseudo 

code of the BestPairSelection function is: 
Algorithm: TPs coverage strategy  

1: PROCEDURE BestPairSelection_ME(J,K,P,S)  

2:   DO FOR j in J, k in K 

3:       Capacity_(j,k) = 1; 

4:   Covered_new_TPs_(j,k) = 0; 
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5:   DO FOR i in P_(j,k) 

6:      IF Capacity_(j,k)-Demand_(i)/Rate[k][r] > 0 

7:        IF i is not yet covered in S 

8:          Covered_new_TPs_(j,k) = Covered_new_TPs_(j,k)+1; 

9:      Capacity_(j,k) = Capacity_(j,k)-Demand_(i)/Rate[k][r]; 

10:        FI 

11:        IF i is already covered in S by the same j 

12:                Capacity_(j,k) = Capacity_(j,k)-Demand_(i)/Rate[k][r]; 

13:        FI 

14:        IF i already covered in S by different j 

15:           IF powerRX_i_(j,k) > powerRX_i_(j,k in S) 

16:                Capacity_(j,k) = Capacity_(j,k)-Demand_(i)/Rate[k][r]; 

17:          FI 

18:        FI 

19:      FI 

20:    OD    

21:  OD 

22:  SELECT (j,k) that has max (C*Covered_new_TPs_(j,k)); 

23:  RETURN  (j,k);        

24: END BestPairSelection_ME 
     

In the first step, the BestPairSelection function puts normalized capacity of every (j, k) pair to 1 

(maximum) and sets the number of TPs that can be covered by that pair to null. Then, the 

function explores every possible (j, k) pair and for each pair function calculates the number of 

currently uncovered TPs. Selection of TPs that can be served by analyzed (j, k) pairs is based on 

order given by P_(j, k), since TPs receiving better signal from that (j, k) pair have priority during 

selection. In order to accept a TP, a (j, k) pair must have enough free capacity to satisfy the 

capacity demand of the TP that will be covered. We define capacity limitation of (j, k) pair as  

           
 

0
),(

),_( 









rkRate

iDemand
kjCapacity         (18) 

where Demand(i) corresponds to dit and Rate(k, r) to Rjkr. Therefore, the BestPairSelection 

function starts to select the first TP in the P_(j, k). If this TP is not yet covered by another pair in 

S and if this TP can be served without breaking the capacity constraint (18), the function 

increases the number of covered TPs of the (j, k) pair by one. Also, the function reduces the 

remaining capacity for the value of TP demand normalized with the proper PHY rate. After that, 

the function proceeds to the next TP in P_(j, k), repeating the same check about the possibility of 

covering that TP.  

If CS j already covers the TP that belongs to P_(j, k), but with a different power level k, the 

function applies only a reduction of the normalized capacity. On the other hand, if some 

previous (j, k) combination already covers a TP, but from the newly analyzed pair that TP 

receives better signal strength, only an update of the normalized capacity of the new pair has to 

be done. In that case, an increase in the number of newly covered TPs will not be performed 

since this TP has been already covered. A reduction of normalized capacity and increase of 

covered TPs does not happen in the situation when an analyzed TP has been already covered by 

some (j, k) combination, from which it receives power that is higher than the power level of the 

new combination. 

Finally, the BestPairSelection function selects a (j, k) pair that maximizes the number of newly 

covered TPs. The chosen (j, k) combination is then introduced by the BuiltUpSolution function 
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in the solution S. Moreover, the algorithm updates the number of covered TPs with those served 

by the just added (j, k) pair and verifies does demands of all active TPs in the analyzed time 

period have been satisfied by added (j, k) combinations in S. If this situation does not occur, the 

algorithm repeats execution of the BestPairSelection function until solution S satisfies capacity 

demands of all TPs active in some time period t, through adding at each step a new (j, k) pair. 

When BuiltUpSolution adds a new (j, k) pair in the solution S, the algorithm invokes the 

TPs_Association function. This function enables, for every TP in solution S, a connection with  

the (j, k) pair from which the TP receives the best power. In order to reduce the Tx power of (j, 

k) pairs in S and to more efficiently explore CSs capacity, the greedy phase ends with the 

Try_Decrease_Power function. This function tries to decrease the selected power level k, 

keeping satisfied the same constraints about capacity (7) and best received power (8). Reasons 

for introducing this function in the greedy phase can be found in significantly better results 

obtained in terms of monthly energy savings if the Try_Decrease_Power function has been 

present in the greedy phase. Due to space shortage, pseudo code of the TPs_Association and 

Try_Decrease_Power function have not been presented for any proposed heuristic algorithms.  

For the case of H-ME/FC algorithm, a generic structure is defined with next pseudo code:  
 

Algorithm: Generic structure of ME_FC heuristics 

1: PROCEDURE Heuristic_ME/FC (I,J,K,P) 

2:      S=∅; 
3:   BuiltUpSolution_ME/FC (I,J,K,P,MM,S) 

4:   LocalSearch (S); 

5:   RETURN (S) 

6: END Heuristic_ME/FC 
 

where the H-ME/FC algorithm has for the input parameters the same sets that we have 

described for the previous algorithm H-ME, with the exception of the parameter denoted 

as MM. The MM has the same meaning as P, but instead of TPs the MM is related to MPs. 

Therefore, MM defines for every (j, k) pair, a subset of MPs that are covered with the wireless 

signal of that (j, k) pair. The greedy phase of the H_ME/FC algorithm is:  
Algorithm: Greedy phase strategy for H-ME/FC heuristics 

1: PROCEDURE BuiltUpSolution_ME/FC (I,J,K,P,MM,S) 

2:       Covered_TPs = ∅; 
3:       Covered_MPs = ∅; 
4:   WHILE Covered_TPs!=ALL_TPs || Covered_MPs != ALL_MPs 

5:           Best_Pair = BestPairselection_ME/FC (J,K,P,S); 

6:       S = S U Best_Pair; 

7:       Covered_TPs = Covered_TPs U Tps_PairToAdd 

9:       Covered_MPs = Covered_MPs U MPs_PairToAdd 

10:   TPs_Association (S,P); 

11:   Try_Decrease_Power (S);  

12: END BuiltUpSolution_ME/FC 
 

Therefore, the solution created by the BuiltUpSolution_ME/FC function has to cover not only all 

active TPs in the analyzed time period, but also all MPs inside the SA. The function continues to 

add a new (j, k) pair in S only if both of these two constraints have been satisfied. For this reason 

we have an 'OR' (||) operator in the condition deciding about exit from the loop that offers final 

solution. Similar to the previous H-ME algorithm, the (j, k) combination added in solution S at 

every algorithm step is selected by the function that is now called BestPairSelection_ME/FC 
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function. In order to introduce in this function the possibility to count the number of MPs that 

are uncovered within S, we perform some modification of the previous BestPairSelection_ME 

function. Previously, the BestPairSelection_ME function selects, among all not yet chosen (j, k) 

pairs, the one which has the maximum increment of TPs not covered within solution S. The new 

function calculates for every (j, k) pair the number of uncovered TPs, also considering the 

number of uncovered MPs. In order to perform this, we need to memorize at every step which 

MPs are already covered in solution S. This operation is simpler than the check made for TPs. 

This is a consequence of the fact according to which MPs do not have to satisfy capacity and 

best power selection constraints. The algorithm needs to guarantee that all MPs in the final 

solution S have been covered with wireless signal during each time period.  

Although the H-MELV algorithm needs to penalize powering on of new CS in subsequent 

time periods, the generic structure of its greedy phase is equal to those of the H-ME algorithm. 

Therefore, H-MELV starts with time period one (t=1) and calculates the solution S (t=1). Then 

it calculates solution S for time period two (t=2), comparing the previous solution with this last 

one. The process is performed for each pair of solutions S that belong to subsequent time 

periods. This comparison is done since the H-MELV algorithm must introduce a mechanism of 

penalty that prefers selection of those CSs that are already active in the previous time period. To 

do this, the value of quantity denoted as C that equals to 1 in the BuiltUpSolution function of the 

H-ME algorithm must be adopted for the case of H-MELV heuristics.  

Actually, selection of the (j, k) pairs performed by the BestPairSelection_MELV function is 

similar to the BestPairSelection_ME. When all (j, k) combinations that are not in S have 

information about the number of uncovered TPs that can be served by each pair 

(Covered_new_TPs_(j,k)), the BestPairSelection_MELV function selects the (j, k) combination 

having the highest number of uncovered TPs. Before this selection, BestPairSelection_MELV 

multiplies Covered_new_TPs_(j,k) with a quantity C. The value of this quantity depends on the 

appearance of the CS j in the solution S of the previous time period. In this way, it is possible 

to privilege those (j, k) pairs to have powered on CS throughout time periods. The 

appropriate value of quantity C equals to 0,6–0,8 for the cases of already powered CS 

in the previous time period. On the other hand, for those CSs that are not powered on in 

the previous time period, the selected value of quantity C equals to 0,3–0,4. Those values 

of C are selected since an experiences obtained during multiple testing of heuristics 

shows best results for exactly those values.  

5.2 Local search phase 

During the second phase, the LocalSearch (LS) function is used to improve the feasible starting 

solution S obtained at the end of the greedy phase. The LS starts from an initial solution S and 

moves to a better solution in its neighborhood until it finds a local optimum, i.e., a solution that 

does not have a better neighbor. A neighborhood is simply a set of solutions that are found by 

applying an appropriate transformation (move) to the current solution. In other words, LS 

chooses an initial solution S and searches for a set S' in solution space Q(S) with f(S')<f(S). If 

none exists, LS stops and S is a local optimum solution. Otherwise it sets S=S' and repeats the 

described search. We have indicated with S' a set of (j, k) pair(s) that are developed from S 

through addition of a CS that is neighbor to existing CS j in S, and through removal of this CS j. 
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Solution space Q(S) is the set of all possible neighborhoods so that Q(S)={S':S'=S U {j} for j in 

J\S}U{S':S'=S\{i} for i in S}. In our case, a neighbor(s) of a CS in the solution S are those CS(s) 

that are able to cover at least some parts of that CS CA.  

The group of all possible neighbors for every CS is calculated before the LS phase and is 

denoted with N. For every CS j, the subset of all possible neighbors has been indicated as N(j). 

The pseudo code of the LS is: 
 

Algorithm: Common LS strategy for each of heuristic approaches 

1: PROCEDURE LocalSearch(S,N,K) 

2:   DO FOR j in S 

3:   Counter=0; 

4:     DO FOR jj in N(j) until Counter<NearMax 

5:      DO FOR k in K 

6:  G(S) = S\{(j,k):j=j}U{(jj,k)} 

7:         S’ = BuiltUpSolution_LS(G(S)); 

8:         IF S’ feasible  

9:      IF Energy_Consump (S’)<Energy_Consump(S) 

10:             S = S’; 

11:             TPs_Association(S); 

12:           FI 

13:           ELSE  

14:             QUIT FOR k 

15:         FI 

16:       OD 

17:       Counter=Counter+1; 

18:    OD 

19:  OD 

20: END Local_Search 
 

As input, the LS takes the previous solution S obtained at the end of the BuiltUpSolution 

function, the set of all possible neighbors N and the set of power levels K. At the beginning, LS 

selects for every CS j in S a neighbor and removes the corresponding CS from the solution S. 

Since such move has changed the previous solution and the possible association with TPs, it is 

necessary to update connections and to check if a feasible and better solution S’ can be achieved 

by selecting (j, k) pairs from G(S). With G(S), we indicate the subset of all possible (j, k) pairs 

generated starting from S, on which a described move can be applied. G(S) is generally different 

from S', because at this point, we do not know which (j, k) pair will be included in S', what Tx 

power level the newly-added CS will have and if this solution will be feasible.  

To generate S’, LS assigns to the added neighbor the highest power level and invokes the 

BuiltUpSolution_LS function. This function is very similar to previously described 

BuiltUpSolution functions. The only difference between them can be found in the way 

BuiltUpSolution_LS selects (j, k) combinations when it creates S'. Instead of choosing among all 

possible (j, k) pairs, the BestPairSelection_LS function explores only (j, k) pairs inside G(S). 

Every time the algorithm needs to calculate solution S’ from G(S), it has to satisfy the traffic 

demand of TPs for the case of H-ME and H-MELV heuristics and also coverage of all MPs for 

H-ME/FC scenarios.  

If a generated solution S’ is unfeasible or if selected (j, k) pairs in S’ can satisfied the traffic 

demand of active TPs, but with a higher energy consumption than (j, k) pairs in S, solution S’ 

will be discarded. Otherwise, if the solution S’ is feasible and results with lower energy 

consumption in comparison with energy consumption of S, the algorithm memorizes these newly 
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discovered (j, k) pairs. In addition, the TPs_Association(S) function algorithm tries to achieve 

further improvement in minimization of energy consumption through reduction of Tx power 

level for the added neighbor until the minimal level of Tx power for this CS can be reached. At 

that point, LS stops the construction of a new solution, memorizes the recently found (j, k) 

configuration and repeats this search for every CS inside the set of neighbors. Once LS reaches 

the last member of the neighbor set N(j), it generates the final solution for the selected time 

period and the heuristics proceed with finding a solution for another time period until all time 

periods have been analyzed. 

Besides the presented heuristic approaches, we experiment with some additional modifications 

related to each of the derived heuristic algorithms. These result with development of modified 

versions of heuristics denoted as Heuristic Modified-Model Energy (HM-ME), Heuristic 

Modified-Model Energy/Full Coverage (HM-ME/FC) and Heuristic Modified-Model Energy 

Limited Variations (HM-MELVs). Generally, the greedy phase of modified heuristics is the 

same as of corresponding heuristic models which are previously presented in Section 5.1. When 

compared with previously presented heuristics, modified heuristics differ in the way of 

performing selection of neighbor CSs during the LS phase. Instead of analyzing for every CS in 

S, all possible neighbors that are not members of S, the LS algorithm of modified heuristics 

randomly selects only one neighbor for every CS in S. This ensures significant reductions in 

exploration complexity of the LS phase, which in addition influences on the computational time. 
 

6. Numerical results 

In order to verify the effectiveness of proposed heuristic algorithms, we have compared results 

of heuristic algorithms with optimization results obtained by corresponding ILP models. While 

results of the ILP models have been obtained at the output of CPLEX solver, results of the 

heuristics approaches are generated following phases of the previously described pseudo codes. 

The efficiency of heuristic algorithms has been tested using an INTEL-Core 2 E8400 processor 

with Kubuntu 8.04 OS and its integrated gpp as compiler. To perform an estimation of energy 

savings obtained with ILP models and heuristic algorithms, we consider the typical working 

activity of nowadays energy inefficient WLANs. Hence, we assume that every AP (CS) always 

transmits at maximum Tx power (k=1) and this transmission does not depend on variations in 

the traffic pattern. Because of this, a permanent average power consumption equal to 12 W (8,64 

kWh/monthly) for every CS inside the SA is considered. This is typical average power 

consumption of APs installed worldwide during last 10 years. Energy consumed by such a 

network is treated as reference network energy consumption.  

6.1 Power consumption and energy savings 

For the case of the medium size network instance presented in Fig. 1, obtained numerical results 

in terms of the instantaneous network power consumption and coefficient of energy savings are 

shown in Fig. 4. Coefficient of energy savings have been calculated in accordance with reference 

to energy consumption of corresponding WLAN instances. The energy savings coefficient for 

each time period is defined as the ratio of energy consumed by analyzed model and reference 

energy consumption of analyzed instance. In Fig. 4 it can be noticed that developed heuristic 

algorithms can modulate instantaneous network power consumption and energy savings 

coefficient in accordance with the realistic traffic patterns. Fig. 4b) reports results of  
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Fig. 4. a), b), c) Instantaneous network power consumption if different time periods and d), e), f) Changes 

in trend of average energy savings coefficient 
 

instantaneous network power consumption obtained for ILP model ME/FC and heuristic 

algorithms H-ME/FC and HM-ME/FC. For each of them, we can notice higher values of 

instantaneous network power consumption during each time period when compared with power 

consumption of other ILP models and heuristic algorithms  presented in Figs. 4a) and 4c). This 

is because guaranteeing full SA coverage at any moment during a day requires a higher number 
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of network devices to be powered on, which consequently results in higher instantaneous power 

consumption of WLAN. If we compare results in Fig. 4a) with those presented in Fig. 4c), we 

can see that the limitation of frequent variations in activity of CSs introduced by H-MELV and 

HM-MELV heuristics does not introduce a significant increase in instantaneous power 

consumption. Therefore, the approach tending to preserve powered on CSs in subsequent time 

periods can be considered for practical implementation. This is important since reduction of 

frequent re-association of users and minimization of signaling overheads will be of great 

significance for future energy-efficient management systems.  

Moreover, in the case of network power consumption, results obtained for the heuristics 

closely pursue those of corresponding ILP models. Generally, Figs. 4a), 4b) and 4c) show that 

results of instantaneous power consumption in most time periods are for heuristics up to 10% 

higher in comparison with results obtained by the corresponding ILP models. This is a 

consequence of the suboptimal nature of heuristics which offers the best possible solution for a 

given problem. Also, somewhat higher instantaneous power consumption of heuristics 

influences on coefficient of average energy savings which is according to Figs. 4d), 4e) and 4f) 

something lower than those of ILP models. In Figs. 4d), 4e) and 4f), we can notice that higher 

energy savings can be obtained during time periods of lower user activity (t=1, 5) and vice 

versa. This confirms that usage of developed heuristic algorithms ensures adaptation of network 

energy consumption to variations in traffic load. When compared with energy consumption of 

nowadays WLANs that lack any energy efficiency, this result with minimization of monthly 

network energy consumption (Fig. 5).  

6.2 Energy consumption and computation complexity 

To prove the convenience of the proposed ILP and heuristic optimization framework, we 

performed five separate tests for each network structure presented in Figs. 1 and 2. Network 

structures have properties as stated in Table 1. Each testing differentiates in allocation of TPs, 

which was random inside the CA of each CS. By performing analyses for each of nine proposed 

models on five network instances of different SA size, we obtain 150 optimization results in 

terms of monthly energy consumption. Due to space shortage, in Fig. 5 we present average 

values of these results, while in Fig. 6 we present average value of computational time elapsed 

before reaching a feasible solution. 

Slightly higher values of power consumption presented in previous Section for the case of 

heuristics are directly reflected in higher monthly energy consumption shown in Fig. 5, for each 

of the considered WLAN instances. In Fig. 5 it can also be noticed that modified versions of 

heuristics (HM-ME, HM-ME/FC, HM-MELV) have a little bit higher monthly energy 

consumption for every instance, when compared with corresponding native heuristics (H-ME, 

H-ME/FC, H-MELV). It is a result of a simpler neighbor search process during the LS phase, 

which terminates on the first randomly selected neighbor. This approach reduces the possibility 

of finding a better neighbor which consequently results with a somewhat higher value of 

monthly energy consumption. Obviously larger network instances with a higher number of 

network devices (APs) consume more energy, regardless of the fact that energy-efficient 

network management has been implemented. Nevertheless, even such energy consumption is 

according to Fig. 5 significantly lower if compared with reference energy consumption of 

WLANs lacking any management schemes. 
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Fig. 5. Monthly energy consumption of ILP models              Fig. 6. Dependence of computational time on 

         and heuristic algorithms for analyzed instances                               size of analyzed instances 
 

Although heuristic approaches offer inferior results of monthly energy consumption in 

comparison with results obtained by corresponding ILP models, for reaching final solution, 

heuristics need significantly lower computational time. This can be clearly seen in Fig. 6, which 

confirms that the size of some network instances directly influences computational complexity 

of the optimization problem and consequently on the time needed for finding the final solution. 

According to Fig. 6, computational time for small network instances is very low, having values 

of the order of less than one minute for both heuristics and mathematical models. Hence, for 

small network instances, the size of optimization problem is small and computation of final 

solution becomes fast.  

For medium size instances, an enormous increase in computational time of ILP models (ME, 

ME/FC, MELV) forced us to terminate the optimization process after 24 hours. Actually, for 

medium size network instances CPLEX solver cannot reach an optimal solution in one day (24 

hours). This is because analyzed optimization problems belong to the NP-hard category of 

problems, lacking any known algorithm that can find an optimal solution in polynomial time. On 

the other hand, for the same network instance each of the proposed modified heuristics finds a 

solution to the optimization problem in 100 times shorter period (Fig. 6).  

Moreover, mathematical (ILP) models solutions using CPLEX solver have not been tested 

against large and extra-large network instances. This is because computational time will be 

enormous (much longer than 24 hours), lacking any possibility for practical implementation of 

ILP models. Nevertheless, for networks of large and extra-large size, heuristics (HM-ME, HM-

MELV) still offer a final solution in a reasonable amount of time (Fig. 6). This time equals up to 

a few hours (Fig. 6) even for extra large instances, which can be acceptable from a practical 

point of view. It is because the optimization process in such large WLANs can be split into 

smaller parts, where a few separate optimization processes can be dedicated to predefined parts 

of the network. For the case of small and medium size network instances, the results presented in 

Figs. 5 and 6 have been obtained with allocation distance of MPs equal to 10 m × 10 m. For 

large and extra-large network instances having area sizes of almost three and five square 

kilometers respectively, results have been obtained for lower dispersion of MPs equal to 30 m × 

30 m. It is reasonable to believe that with this allocation density of MPs in areas of such sizes we 

still guarantee full SA coverage.  
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Although heuristics offer a final solution without guaranteeing optimality, in the context of 

computational time heuristics obviously outperform CPLEX solver. With reasonable 

computational time and a final solution that is at a maximum 10% worse than the solution 

obtained by ILP models and CPLEX solver, heuristics can be a valuable alternative to the ILP 

approach in practical implementations. 
 

7. Conclusion 

In this paper, we have considered the problem of optimizing the energy consumption of WLANs 

through switching on and off and adjusting the emitted power of access stations based on 

realistic traffic patterns. We have proposed several ILP optimization models and corresponding 

heuristic algorithms that allow selection of optimal network configuration in terms of energy 

consumption. While ensuring minimization of network energy consumption, some of the 

proposed heuristic algorithms can guarantee full SA coverage or limit frequent variations in 

activity of network devices. Although heuristics offer somewhat inferior results of instantaneous 

power consumption and monthly energy savings, in terms of computational time, heuristic 

algorithms clearly outperform corresponding ILP models. Even for the optimization problems 

analyzed on the largest network instances, heuristics still give a feasible solution in a reasonable 

amount of computational time. This makes heuristics algorithms convenient for practical 

implementation in real network management systems. We are currently working to extend 

proposed ILP models and heuristic algorithms to consider possible energy savings in wide area 

wireless access networks like 2G/3G/4G networks.  
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